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Abstract

Laminar film condensation on an inclined circular tube, under the condition of combined free and forced
convection, is analyzed. The assumptions are as in the analysis of Shekriladze and Gomelauri [Theoretical study of
laminar film condensation of flowing vapour, Int. J. Heat Mass Transfer 9 (1966) 581-591]. In addition, some
approximations are introduced for the determination of the interfacial shear stress. The resultant governing
equation, in special cases, yields the known analytical solutions of horizontal and vertical tubes, which were
obtained in previous studies. A numerically obtained solution reveals the effects of vapour velocity and gravity
forces on local and mean Nusselt numbers. For the case of an inclined tube with infinite length, an explicit simple
expression has been obtained, based on numerical results, to calculate the mean Nusselt number for the whole tube

surface. © 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

The problem of forced convection laminar film con-
densation, under the combined effect of gravity force
and vapour velocity, has received considerable atten-
tion in recent studies.

Shekriladze and Gomelauri [1] solved this problem
numerically for a horizontal tube in a vertical vapour
downflow. They used an approximate expression for
the interfacial shear stress, together with the assump-
tions of Nusselt [2]. Their numerical results were
shown by Rose [3] to be represented to within 4% by
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where Nuy is the mean Nusselt number, Re, is the two-
phase Reynolds number and Fj is a dimensionless par-

ameter which measures the relative importance of grav-
ity force and vapour velocity on the condensate film
motion.

A more accurate model for the interfacial shear
stress was made in the analysis of Fujii et al. [4], where
the solution of the condensate film and vapour bound-
ary layer equations was made with matching of the
shear stress at the interface. Inertia, convection and
pressure gradient effects were also neglected in the
analysis. Although their analysis enables the vapour
boundary layer separation to be determined, however,
it gives values of Nuy, that are in close agreement with
that calculated from Eq. (1), except at a low conden-
sation rate condition [5,6].

Krupiezka {7] investigated the effect of surface ten-
sion, due to the curvature of the condensate film on a
horizontal tube, in a Nusselt type model. He concluded
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Nomenclature

C, specific heat of condensate at constant
pressure

d tube diameter

Fy =(Gry/Re ﬁ)(,uhfg”/(kAT )),  dimensionless
parameter

F, = Fy/cos ¢, dimensionless parameter

F, = (Gr,/Re?)(uhs,"/(kAT)),  dimensionless
parameter

g acceleration of gravity

Gry =gp2d3/u?, Grashof number for tube

Gr, =gp?z3/u?, Grashof number for vertical
plate

gy latent heat of condensation

hey” modified latent heat of condensation

k thermal conductivity of condensate

L tube length

L™ =2L/(d tan ¢ ), dimensionless tube length

m condensate mass flow rate

m” condensation mass flux

Nuy = ad/k, mean Nusselt number

Nug(z) =o,dik, peripherally-averaged local
Nusselt number

Re, =Vd/v, two-phase Reynolds number for
tube

Re, = Vz/v, two-phase Reynolds number for
vertical tube

u, w condensation velocity components in x-
and z-directions, respectively

Voo free-stream vapour velocity

V. x-component of vapour velocity at the
edge of vapour boundary layer
V., z-component of vapour velocity at the

edge of vapour boundary layer
peripheral coordinate

z axial coordinate

z" dimensionless axial coordinate

Greek symbols

o =k/d, local heat transfer coefficient

é local film thickness

A dimensionless local film thickness, Eq. (15)
AT =(T,—Ty), temperature drop across the

condensate film
n dimensionless local film thickness, Eq. (22)
u dynamic viscosity
v kinematic viscosity of condensate
p density of condensate

Tsx interfacial vapour shear in x-direction

Tsz interfacial vapour shear in z-direction

¢ peripheral angle from top point of tube

@ angle of inclination of tube with horizontal
Subscripts

s saturation

w wall

x x-direction

z z-direction

that the surface tension effect is only significant for
small-diameter tubes.

Rose [3] using the assumptions of Shekriladze and
Gomelauri examined the effect of pressure gradient in
the condensate film. Rose concluded that for (p,V'2)/
(gpd) < 1/8, where a solution could be obtained for
the whole surface, the mean Nusselt number is within
1% of that found when ignoring the pressure term.

A recent state-of-the-art review made by Rose [8]
summarized that inertia and convection effects in
forced convection film condensation can, for most
practical circumstances, be generally neglected.

Concerning combined convection film condensation
on inclined circular tubes encountered in many practi-
cal applications, no theoretical studies (to the author’s
knowledge) are available in literature. Therefore, the
aim of the present work is to analyze this problem of
mixed-convection film condensation outside an inclined
circular tube. The analysis will be performed based on
the assumptions of Nusselt, together with adopting the
vapour shear model of Shekriladze and Gomelauri.

2. Analysis and mathematical formulation

The physical model and coordinate system used are
shown in Fig. 1. A pure, dry saturated vapour with
temperature 7 flows downward (with uniform ‘free
stream’ velocity V,,) over a circular tube inclined with
angle ¢ to the horizontal. This tube is cooled internally
such that the wall temperature 7, is uniform and
much lower than the vapour saturation temperature
T;. Thus, a continuous condensate film will form out-
side the tube flowing in both the axial and peripheral
directions. The assumptions employed in the formu-
lation of the problem are:

1. Condensate film thickness is much smaller than the

tube diameter.

2. The inertia and pressure terms in the momentum
equation and the convection terms in the energy
equation for the condensate film can be neglected.

. Surface tension effect is insignificant.

4. The condensate film flow is laminar, steady and

w
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with negligible viscous dissipation.
5. All physical properties of the condensate film are
constant.

Based on these assumption, the x- and z-momentum

g
, Horizontal
)
4 1 1
Fig. 1. Physical model.
9%u .
By +pg sin ¢ cos =0 (2a)
ay
8%w .
Um— +pgsin =0 (2b)
dy

equations for the condensate film are written, respect-
ively, as

with the boundary and interface conditions
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ay=0, u=0, w=0 3)

9
ay=s, S4_Tu O _Tx @
dy u dy

wherein u and w are, respectively, the velocity com-
ponents in the x- and z-directions. The symbols 15,
and 715, denote, respectively, to the x- and z-com-
ponents of interfacial shear stress.

Integrating Eqs. (2a) and (2b) with the use of
boundary conditions (3) and (4) gives, respectively,

1
u=yis = pg cos ¢ sin ¢(*/2 — 8y)} Q)

1
w= e —pg sin (/2 — 5y)} (6)

Considering potential vapour flow with uniform verti-
cal velocity V,, the vapour velocity at the edge of the
boundary layer may be derived in the x- and z-direc-
tions, respectively, by

Ve=2Vs cos @ sin ¢ @)

V, =V sin ¢ (8)

In a similar way to that made by Shekriladze and
Gomelauri [1], the interfacial shear stress can be evalu-
ated (under infinite-condensation-rate condition) in the
x- and z-directions by:

Tox = mg(Vx - “5)2”'”,(; Ve (9)

5 = MV, — ws) V. (10)
wherein mg is the local condensation mass flux. Eqgs.
(9) and (10) require that V. >»us; and V,>ws.
Investigating Eqs. (7) and (9) reveals that the periph-
eral interfacial shear stress 75, is positive for all values
of the peripheral angle ¢. Thus, the possibility of
vapour boundary layer separation is excluded from
this analysis.

A mass balance for the condensate element, shown
in Fig. 1, yields

. dm afr
g:é X z = p—
" (ax + Bz) pax<J0”dy>
3 5
+p£ Jowdy

and a heat balance at the condensate—vapour interface,
as in Nusselt’s theory [2], gives

(amn

kAT
" — 12
"= (12)
where hf, = he +3C,AT/8 is the modified latent heat of

condensation proposed by Rohsenow [9] to account
for the effects of heat convection in the film.

When Eqgs. (7)—(10) are used to eliminate 75, and 15,
from Egs. (5) and (6), respectively, the integral in Eq.
(11) may be evaluated and the resultant value of mg
can be used in Eq. (12). With some rearrangement one
gets the following differential equation:

R hf, G 30> d
cos ¢ sin ¢>( 4 ;:A—f;, dr4d(52) 59 + — sin

Reg . uhiy Gry,\3o" 2 13
“’(F”m’d‘*& —+§cosqocos (13)

Rey  uhty Grd 2) 2
¢<37ﬁ wr a0 )0 =1

for the local condensate film thickness 6 as a function
of the two-phase Reynolds number Re,, Grashof num-
ber Gr, inclination angle ¢, peripheral angle ¢ and
axial location z.

Eq. (13) can be rewritten in the dimensionless form:

sin ¢(1 +4F;4

d)
(14)
4
+2 cos d)(l + ngA2>A2 =1/4
where
5 /=
- 1
A 2d‘/Red cos @ (15)
Z1t =2z/(d tan ¢) (16)
and
Fq=(Gra/(Re} cos @))(uhiy/(kAT)) amn
The boundary conditions are:
aaZt =0, A=0; rn=¢=0 (18)
a4
aapg=0, ¢p=m %:O; 002Z =0 (19)
a4
+ . -
at Z T—o0; 8Z+—-0 20)

The boundary condition (18) indicates that the film
thickness is zero around the tube at its upper end. The
second boundary condition expresses the symmetry of
the condensate film and its smoothness at the top
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(p=0) and bottom (¢ =m=) points along the tube. The
third condition implies that for a large distance from
the upper tube end, the condensate film thickness var-
ies only around the tube. The same condition was used
in previous studies made on the problem of free con-
vection film condensation on inclined circular and
elliptical tubes [10,11].

3. Solution
3.1. Special solutions

Before solving Egs. (13) or (14), which represent the
general case, the following special cases will be con-
sidered first.

3.1.1. Free convection film condensation on an inclined
tube

For a quiescent vapour (Voo =0 or Re;=0), Eq. (13)
reduces to one which can be reformulated as

on . on
57T + sin ¢ﬁ =4/3(1 — 5 cos ¢) 21)
for the dimensionless film thickness,
26%  uhf,
n= WG"”KT cos @ (22)

Eq. (21) is the same result found originally by Hassan
and Jakob [10]. Later, Mosaad [12] found the same
governing equation (21) by analyzing the problem in
the framework of boundary layer theory.

For the case of an inclined tube with infinite-length,
the term d,/8Z " may be neglected, as made in the
analysis of Hassan and Jakob [10] and that of Fieg
and Roetzel [11]. Hence, the solution of the reduced
equation; for dn/d¢p=0 at ¢=0, leads finally to the
mean Nusselt number formula:

" 1/4
~ ,uhfg
Nuy = O.728{GrdkAT cos @ } (23)

which is the same empirical formula proposed by Selin
[13] to achieve good agreement with his own exper-
imental data. This relation for ¢ =0 simplifies to the
known Nusselt’s expression of the horizontal tube.

Eq. (23) can be rewritten in the alternative form:

Nua/y Req cos @ = 0.728F /* (24)

3.1.2. Forced convection dominated film condensation on
an inclined tube
For g = 0 (i.e., F;=0), Eq. (14) simplifies to

aA* . 047 5
8Z++2 sin ¢W_1/2_4A cos ¢ (25)

which is the same result found by Mosaad [14].

For the case of the infinite-tube-length, the term an/
dZ " may be neglected. Hence, Eq. (25) simplifies to
one, which leads finally to the mean Nusselt number
expression:

Nuy/+/ Rey cos ¢ = 0.9 (26)

which for ¢ =0 (horizontal tube) simplifies to that of
Shekriladze and Gomelauri [1].

3.1.3. Combined free and forced convection film
condensation on a horizontal tube

For ¢ =0 in Eq. (13), one gets, after some rearrange-
ment

Az
sin ¢(1 + 4F0A§)aa—¢°

@n

+2 cos ¢(1 + gFoAg)...Ag =1/4
where A, is a dimensionless local film thickness defined
by Eq. (15) for ¢=0. Eq. (27) is the same result found
by Shekriladze and Gomelauri [1], which is solved nu-
merically. Their numerically obtained values of the
mean Nusselt number Nu, were shown by Rose [3] to
be represented to within 0.4% by Eq. (1).

3.1.4. Combined free and forced convection film
condensation on a vertical tube

For ¢=m/2 in Eq. (13) omitting the ¢-derivative
terms, one gets after some rearrangement:

(1+8F, 42)3—"3 =12 (28)
0075z +
where 4o, Z 7 and F, are, respectively, defined by Eqgs.
(15)—(17) omitting the ¢-terms involved.
Solving Eq. (28); for A,=0 at Z * =0, finally leads
to the expression:

Nu,/y/ Re, = 5-1\/—5\/1 ++/1+16F, (29)

for the local Nusselt number Nu, as a function of Re,
and F..

Shekriladze and Gomelauri {1] found Eq. (29) pre-
viously and recommended applying it for the vertical
tube provided that § <d.

So far, it is clear from the above-mentioned special
cases that the model yields the same solutions obtained
in previous studies. This proves its validity and correct-
ness.
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Fig. 2. Mean Nusselt number for infinitely long tube as a function of Fj.

3.2. General solution

First, the simple limiting case of an inclined tube
with infinite length is considered. Then, the more gen-
eral case of the finite-tube-length will be dealt with.

3.2.1. Infinite-length inclined tube

For this case, the term dn/dZ" in the general
governing equation (14) may be neglected. Hence,
this equation simplifies to

2
sin ¢(1 + 4FdA2)%
(30)

4
+2 cos ¢(1 + §FdA2)A2 =1/4

Fieg and Roetzel [11] found an approximate solution
for the problem of free convection film condensation
on an infinite-length inclined elliptical tube by neglect-
ing the axial variation in the film thickness compared
to the peripheral variation. In addition, the finite-tube
solution presented in the next subsection reveals that
beyond a short length from the upper tube end of
Z " a 2.6, the z-variation of film thickness is negli-
gible. Thus, this approximation of neglecting the term
8n/8Z * in the solution of the infinite-length case will
be of negligible influence on the calculated mean
Nusselt number (cf, Fig. 4).

The above Eq. (30), with A and F, defined, respect-
ively, from Eqgs. (15) and (17) for cos ¢ =1, reduces to
the same Eq. (27) of the horizontal tube.

Eq. (30) with boundary condition (19) can be solved
numerically to calculate A(¢) around the tube; for
different values of F, These numerically obtained
values of A(¢) can be used to calculate the local
Nusselt number from

Nud,/,/ﬁed cos @ = —1 (31)
24(o)
and the mean Nusselt number from
Nua/+/ Req cos ~1Jn ! do (32)
Haly Rea S8 9 =210 24(9)

Employing a fourth-order Runge—Kutta numerical in-
tegration procedure performed the numerical solution
of Eq. (30). Step size of A¢=0.05° was used.
Simpson’s rule has been used to calculate numerically
the integration in Eq. (32). The upper limit of this inte-
gration was limited to ¢=3.125 instead of ¢ =n=. This
is to overcome the problem that the value of 4, calcu-
lated numerically from Eq. (30), goes to infinity as

o=

3.2.2. Finite-length inclined tube
The case of the finite-length tube represents the most



M. Mosaad [ Int. J. Heat Mass Transfer 42 (1999) 40174025 4023

general case. For this case, the main governing
equation (14) has to be solved numerically subject to
boundary conditions (18)—(20). This is to calculate the
dimensionless local film thickness 4 as a function of
F,. Then, the peripherally averaged local Nusselt num-
ber can be calculated from

1" 1

Nua(2)//Req cos ¢ = ;Jl

0 24z 9 (33)

and the mean Nusselt number from

. — 1 Lt on d
Nita/y/ Req cos ¢ = {EJ J iﬁ—:)dz+ (34)

0 Jo

where L * is the dimensionless total tube length.

The same numerical techniques used in the above
section, have also been used to solve Eq. (14) as well
as to calculate the integration of Eqs. (33) and (34).
Step sizes of A¢=0.05 and AZ* =0.1 were used in
solving Eq. (14). To assess the accuracy of these nu-
merical solutions, the analytical solutions (24) and (26)
were used as a reference. The relative deviations
between the analytically and numerically calculated
values of mean Nusselt numbers were around +1%.

4. Results and discussion

For the case of an inclined tube with infinite-length,
the values of the normalized mean Nusselt number,

Nug/+/ Req cos o,

calculated numerically from Eq. (32) for different
values of F, ranging from 0-10*, were found to be rep-
resented with an accuracy of +0.5% by

0.9 +0.728F )/
(1+3.44F 2 L Fp)'/4

Nug/+/Req cos ¢ = (35)

The similarity between Egs. (27) and (30) explains that
between Egs. (1) and (35).
Fig. 2 displays the above relation in terms of

Nug/y/ Rey cos @

versus FY* It is seen that as F,; goes to infinity (i.c.,
Re;— 0), Eq. (35) satisfies the free convection (quiesc-
ent vapour) film condensation solution (24) found pre-
viously by Hassan and Jakob [10]. For the other
extreme of F;— 0 (i.e., g = 0 or Rey— oc), Eq. (35)
satisfies the forced-convection-dominated laminar film
condensation solution (26) obtained previously by
Mosaad [14].

The case of the finite-length tube, numerical results,
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Fig. 3. Peripherally-averaged local Nusselt number along a
finite-length tube for various values of F,.

calculated from Egs. (33) and (34), are plotted in Figs.
3 and 4, respectively. The distribution of the peripher-
ally averaged Nusselt number along the tube is dis-
played in Fig. 3 in terms of

Nugf2)/+/ Reg cos @

8.1

10000
N

0.0

20 30 40
Dimensionless tube length, L

(=]
[o
(=]

Fig. 4. Mean Nusselt number as a function of the total tube
length, for different values of F,: dashed lines represent the in-
finite-length tube solution given by Eq. (35).
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Fig. 5. Ratio of the mean Nusselt numbers of finite- and infi-
nite-length inclined tubes vs the dimensionless total tube
length.

versus Z ©, for different values of F,. At fixed Z *,
Nu,(z) increases with increasing F,. However, for con-
stant F,, Nu,(z) decreases from an infinite value at the
start point (Z* =0) with increasing Z " to assume a
constant value as Z © — oo, or more precisely as Z *
exceeds the value 2.6. This constant value is 0.9 for
F;=0, ie., the same solution of forced convection
dominated film condensation [cf, Eq. (26)].

Fig. 4 shows the dependence of the mean Nusselt
number for the whole tube surface Nu, [calculated
from Eq. (34)] on the dimensionless total tube length
L™ and the dimensionless parameter F,. It is clear
that the term

Nua/y/Rea cos ¢

decreases with an increase in the total tube length
L™. As L™ exceeds 40, this term assumes the con-
stant infinite-length values [calculated by Eq. (35) as
a function of F,. Dashed lines in the plot represent
the infinite-tube solution (35). Therefore, these results
of Fig. 3 could be represented by one curve in
Fig. S, in terms of ratio of the mean Nusselt num-
ber of the finite-length tube to that of the infinite-
length tube versus the dimensionless total tube length
L™,

5. Conclusions

The heat transfer problem of forced convection
laminar film condensation on an inclined tube has
been analyzed with considering the combined influence
of vapour shear and gravity forces. The vapour shear
at the condensate surface was modelled by assuming
potential vapour flow outside the vapour boundary
layer, together with employing the infinite-conden-
sation-rate  approximation of Shekriladze and
Gomelauri [1].

For free convection (quiescent vapour) laminar film
condensation (V=0 or F;— o0), the model yields
the same result of Hassan and Jakob [10]. The more
special case of the infinite-length tube, expression (23)
for calculating the mean Nusselt number for the whole
tube surface Nu, has been derived analytically, which
is the same empirical correlation proposed by Selin
[13] based on his own experimental data.

For forced-convection-dominated film condensation
(F;— 0), the model gives the same result as Mosaad
[14]. Additionally, the model yields, in special cases,
the known analytical solutions of horizontal (¢=0)
and vertical (¢ =n/2) tubes, which were obtained pre-
viously by other authors. This proves the validity of
the present approach.

References

[1] 1.G. Shekriladze, V.I. Gomelauri, Theoretical study of
laminar film condensation of flowing vapour, Int. J.
Heat Mass Transfer 9 (1966) 581-591.

[2] W.  Nusselt, Des Oberflachenkondensation des
Wasserdamfes, Z. Vereines Deutsch. Ing. 60 (1916) 541—
564; 569-575.

[3] J.W. Rose, Effect of pressure gradient in forced convec-
tion film condensation on a horizontal tube, Int. J. Heat
Mass Transfer 27 (1984) 39-48.

4] T. Fujii, H. Honda, K. Oda, Condensation of steam on
a horizontal tube—the influence of oncoming velocity
and thermal condition at the wall, Proceedings of the
18th National Heat Transfer Conference 1 (1979) 35-43.

[5] S.B. Memory, V.H. Adams, P.J. Marto, Free and forced
convection laminar film condensation on horizontal
elliptical tubes, Int. J. Heat Mass Transfer 40 (1997)
3395-3406.

[6] S.B. Memory, W.C. Lee, J.W. Rose, Forced convection
film condensation on a horizontal tube—effect of sur-
face temperature variation, Int. J. Heat Mass Transfer
36 (1993) 1671-1676.

[71 R. Krupiezka, Effect of surface tension on laminar film
condensation on a horizontal cylinder, Chemical Eng.
Process 19 (1985) 199-203.

[8] J.W. Rose, Fundamental of condensation heat transfer:
laminar film condensation, JSME Int. J. 31 (1988) 357
375.

[9] E.M. Rohsenow, Heat transfer and temperature distri-



{10]

(]

[12]

M. Mosaad [ Int. J. Heat Mass Transfer 42 (1999) 4017-4025

bution in laminar film condensation, Trans. ASME 78
(1956) 1648-1654.

K.E. Hassan, M. Jakob, Laminar film condensation of
pure saturated vapour on inclined cylinders, J. Heat
Transfer 80 (1958) 887-897.

G.P. Fieg, W. Roetzel, Calculation of laminar film con-
densation in/on inclined elliptical tubes, Int. J. Heat
Mass Transfer 37 (1994) 619-624.

M. Mosaad, Free-convection laminar film condensation

f13]

f14]

4025

outside an inclined tube, Engineering Journal of
Mansoura University 19 (1994) 70-78.

G. Selin, Heat transfer by condensing pure vapours out-
side inclined tubes, Proceedings of the International
Heat Transfer Conference II (1961) 279-289.

M. Mosaad, Forced convection film condensation of
flowing vapour on an inclined circular tube, J. Heat
Mass Transfer “Waerme und Stoffuebertragung” (sub-
mitted).



